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ABSTRACT 

In this project,	we explore	a data-driven approach for monitoring rail 

infrastructure from	the dynamic response of a train in revenue-service.	Presently,	

rail inspection is performed either visually or with dedicated track geometry cars.	

We examine a more economical approach where rail inspection is performed by 

analyzing	vibration	data	collected from an	operational	passenger train. The	high	

frequency	with which passenger trains travel each	section	of track means that faults 

can be detected sooner than	with dedicated inspection	vehicles,	and the large	

number of passes over each section of track makes a data-driven	approach	

statistically	feasible.	With the financial	and logistical	support of	the Technologies for 

Safe and Efficient Transportation	University	Transportation	Center,	we	have	

deployed a test-system	on a light-rail	vehicle and have been	collecting	data	for the 

past	two years.	The collected	data underscores two of	the	main challenges	that	arise 

in train-based track monitoring:	the	speed	of the train	at a given	location	varies 

from	pass to pass and the position	of the train	is not	known precisely.	 We explore	

which feature representations	of the	data best characterize	the	state	of the	tracks	

despite	these	sources	of uncertainty (i.e., in the spatial domain or frequency 

domain),	and we examine how consistently change detection approaches can 

identify	track	changes from the data.	We show	the accuracy of these different 

representations, or features,	and different	change detection	approaches on	two 

types	of track changes, track replacement and tamping (a maintenance procedure to 

improve track geometry),	and two types of data, simulated data and operational 

data from	our test-system.	The sensing,	signal processing, and data	analysis we 



	 	 	 	 	 	 	 	 	 	

	 	 	

	

	

 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	

	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

present	could facilitate safer trains and more cost-efficient maintenance in the 

future.	Moreover,	this approach is quite general	and could be extended to other 

parts of the infrastructure,	including	bridges.	

1. Introduction 

While continuous monitoring of engineered assets has become cost effective in 

fields like manufacturing and aerospace, the majority of civil assets are still 

monitored by visual inspection [1,2].	This project focuses	on railroad	infrastructure,	

which is monitored by a combination	of visual	inspections and specialty	track	

inspection	vehicles, known as track geometry cars [3].	Inspection	cars are expensive 

to operate,	and as such, they are	used to inspect the tracks	infrequently	[4]. A	

number of researchers	have	propose using vibration-based monitoring to assess 

the track	profile as a lower-cost alternative	to	the	type	of optical sensors currently	

employed on track geometry cars [5–10]. All of these studies assume that	the 

sensors are	placed	on the	axle	of the	train	so that they have a direct mechanical 

connection	to	the	track.	In addition, they assume the position of the train	is known,	

typically achieved by requiring	that the inspection	car operate	at a constant speed. 

In this project, we explore a more economical approach: using operational trains 

and allowing	the sensors to be placed inside the cabin [11].	By using operational	

trains, no dedicated monitoring vehicles are required, track closures are avoided, 

and tracks can be interrogated more frequently. The	high frequency of interrogation	

not only means that issues can be flagged more rapidly, but also more passes over 

areas of	interest can	be	collected, meaning greater statistical confidence about the 



	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	

	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 		

state	of the	track.	Lastly,	by	allowing	the	sensors to	be	placed	in the	cabin,	the	

sensors can	be installed more easily	and can be protected from	the external 

environment. 

There are numerous challenges that must be overcome for	this method to 

become practical, two of	which	we	explore	in detail in	this	project.	The first	is that a

train’s speed over a section	of track differs	with	each	pass,	so methods robust to 

train speed must be found for comparing data between passes. This is particularly 

challenging	when	the sensors are in	the train’s cabin,	because the train’s suspension 

filters	the	roughness from	the track differently	depending on speed. The second

challenge	is that we	do not know the	precise location	of the	train	due	to	GPS noise,

so position uncertainty must be considered in attempting to detect track changes 

from	the vibration signal. 

We learned about	these challenges	through	our long-term	monitoring project in 

partnership with the Port Authority of Allegheny County. We have placed 

accelerometers and a	GPS antenna on an	operational light-rail vehicle	and	have	been 

collecting	data	over the	last two years.	We have focused on determining which 

analysis techniques are best	suited for train-based monitoring and understanding	

why certain	techniques work	better than	others.	To gain insight into	the	vehicle-

based monitoring problem,	we also modeled a simplified version of the	train-track	

interaction using	a single	degree-of-freedom	oscillator travelling over a rough track. 

This parametric simulation allowed us to explore the effects of variable speed and 

position	uncertainty in	a controlled	setting	before	validating	on the	light-rail data. 



	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

Simulation has three main benefits. First, we can generate much more data than 

we could collect from	instrumented vehicles. Although we have been	collecting	data	

from	the light-rail system	for two years, there are relatively few recorded	

maintenance events in	the rail-network	each year that we can use to test our 

approach.	With simulation, we can rapidly generate hundreds of track changes. 

Second, we can simulate a wider range of parameters than the narrow band we have 

observed	i our operational system. For example, the light-rail vehicle	has	a natural 

frequency	that	only varies slightly (due to temperature/passenger loading), but	we 

can simulate a much wider range of natural frequencies to ensure that the analysis	

techniques we find are general.	Third,	in the data we have collected, we do not have

the ground-truth of the train’s position. Through simulation, we can study the effect 

of position	error, and	propose techniques	that	work	well	for the level	of error we 

expect in operational systems.	

While our ultimate objective is to build a complete track-monitoring system, we 

focus in this project on	two	main components required for automated track	

monitoring:	meaningful feature extraction from	the raw vibration signals and 

detection	of track-changes from	these	features.	For the	first component,	we

examined four	different features,	and then	used supervised	classification	to	

determine which one provides the most reliable information about the state of the 

track. The	fact that the	train’s	speed	varies	between each	pass (or	the speed of the 

travelling damped oscillator in simulation) made comparing the data from	multiple 

passes challenging. The signals are recorded in the time domain, but given that track	

changes are localized	in space the	spatial domain is often more useful for detecting 



	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

track changes. We examined features based on the time-domain signal, spatial-

domain signal and frequency-domain signal as well	as features based on	the energy	

in the signal. We show the discriminate power of these features on data from	our 

parametric simulation as well as on the light-rail dataset. 

The second component in our automated	detection system, change detection, is 

a challenging	task	because we do not	know	a-priori	the type of change we are	trying	

to detect [12]. The most closely related study of automated track anomaly detection 

from	the vibration	signal of a train	is that	done by Molodova	et	al.	[13] where a

system	for detecting track squats (a type of rail-surface	indentation) was proposed.	

In	the study,	a detection	event was	triggered	by	a vibration	signal above	a pre-

defined threshold. We aim	to build a broader detection system	where anomalies are 

defined as	changes	relative	to	historical behavior.	This ensures	that areas	with	

consistently	high vibrations	(like	track switch	gear or joints)	are not	labeled as

anomalies, while changes,	even in	areas	with low	vibration-amplitude, are detected.	

For example, we will show that our method detects changes	in track geometry due 

to tamping that can	have safety implications despite their small amplitude.	This

historical detection technique allows for the monitoring of an entire network 

without manually tagging problematic areas as the method in Molodova et al. 

requires. 

To perform	change detection, we	experimented with common methods like 

cumulative sum	chart control (CUSUM) [14] and generalized likelihood ratio (GLR) 

[15], as well as a simplistic	Haar	filter [16,17] borrowed from	the field of signal 



	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	

	

 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	

	

processing and computer vision. We report the performance of these approaches 

both on our simulated data as well as on the light-rail dataset. 

Overall, we find that monitoring rail infrastructure from	the vibrations recorded 

in operational trains appears to be a promising technique.	As a validation, we	were 

able to detect relatively subtle changes, such as the changes due to tamping, using 

the simplistic yet	robust	proposed method.	In this project,	all of the light-rail data 

was obtained from	a single instrumented vehicle, although a larger number of 

instrumented vehicles could lead to most accurate assessments of the 

infrastructure.	Given the	projected	growth	of connected	vehicles,	the	proposed

method could become an even more relevant method for infrastructure inspection.	

2. Rail-Monitoring Method	

Our proposed rail-monitoring method uses data collected from	accelerometers 

inside a train	to	identify	changes over time in rail infrastructure. In thinking about 

how to	analyze	the	data,	our first	goal was	to	understand	how track roughness,

filtered	by	the	train’s	suspension,	produces	vibrations	in the	train’s	cabin.	To do this	

we used the simplest possible model, a travelling damped oscillator as shown in Fig. 

1 and conducted a simulation study as will be described in the following section.	We

sought to determine how best to detect changes	in a section	of track	as the	oscillator	

traveled repeatedly	over it. This same type of model has been used previously in the 

rail-monitoring literature [8,18],	but we extended that	work	to include variable 

train	speed and differing	levels of position	uncertainty [19]. 



	 		

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	

	

	 	 	 	 	 	 	 	 	

2.1	Feature Selection	Simulation	

We conducted a simulation of an oscillator travelling	over a rough track	to 

understand which features, when extracted from	its dynamic response, are sensitive	

to track	changes, but	robust	to speed	and	position	uncertainty.	The framework of 

the simulation is shown in Fig. 2. First we simulated a	track	profile and a	change in	

that	profile,	for various types of track	repairs.	We then	simulated the oscillator 

passing over the roughness 100 times before and after the track-repair, where	each	

pass over the track	had a	unique	speed profile,	and extracted relevant features from	

the dynamic response of the oscillator. Finally, we quantified how well we	could 

differentiate	between	the	data before	and	after	the	repair.	We	repeated the steps of 

the flow	chart	in	Fig. 2 for oscillators	of different natural	frequencies and damping 

ratios. The	goal was	not only to understand the behavior of the oscillator for 

parameters most similar to those of the light-rail system, but also to gain	insight into	

how the results would vary for different rail systems so as to make the results more 

general.	

Fig. 1. Traveling oscillator moving over a rough track. 



	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	

Fig. 2. Flow chart of the simulation. Note that	this process was	repeated for the three types	of track 

changes, for a variety of damping ratios, natural frequencies, and position	uncertainty levels. 

Fig. 3. Three types of roughness changes (left plots),	with detail	of	each (right plots).	(a)	A toy-model 

change (used later to provide visual intuition about the simulation) and (b) the detail of the toy-model 

change.	 (c) spike change, characteristic of a broken track before and after replacement, with a 

realistic track roughness and (d) the detail of the spike change at 150m.	(e) The tamping change, 

simulated using a filter with the same smoothing effect of the tamping machine and (f)	the detail of 

tamping which occurs between 150m and 250m. 

When simulating the roughness, we generated a 1km	section of track for 

three change types,	each of which is shown	in	Fig. 3.	The first	track	change, in Fig. 

3a,	is a toy-model of roughness used to visualize the simulation later in the project 

(greater	detail is shown	in Fig. 3b).	For the second and third track	changes (Fig. 3c	



	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 			

	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	 	

	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

and Fig. 3e), we simulated two types of track changes we had observed in practice, a 

large localized spike which is removed, simulating the replacement of a broken 

track	(detail	in	Fig. 3d), and a smoothing of a track profile, simulating tamping 

(detail in Fig. 3f). For each of these realistic changes, we also simulated a realistic 

track roughness using the parameters found in the literature [4]. For the tamping 

change, we	filtered	this	track roughness as pe the smoothing effect of the tamping 

machine in [4], reducing the standard deviation of the track profile from	2mm	to 

1.5mm	over a 200m	section of track. 

Once we generated the track	roughness,	the next	step	was to generate the 

response	of the	oscillator;	two	realizations	of this	process	over the same roughness 

with different	speed profiles are shown	in	Fig. 4.	Fig. 4a	shows the	speed profiles in	

the time domain, while Fig. 4b shows	them in the spatial domain (i.e.	plotted	against 

position).	Note when	the speed approached zero, no	distance	is covered, producing 

the scalloping	effect	in	Fig. 4b, a phenomenon which is common when the train	

stops	at a station.	When generating the	speed	profile,	we limited it to be between	0 

and 15m/s (35	MPH	/ 55 KPH) which is the same as that	of the light-rail vehicle in	

our deployment. The	toy-model roughness profile	is shown	in Fig. 4d as a function	

of position,	but the train	experiences	this profile in the time domain Fig. 4c.	We

generated the response of	the	oscillator	in Fig. 4e	by solving	the following	

differential equation [20]:	

� � + 2��! � � − �(�) + �!! � � − �(�) = 0, 

where � is the damping ratio	of the	oscillator, �! is the natural	frequency	of the

oscillator,	� is the displacement of the oscillator, and � the track	roughness as shown	



	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	

	 	 	

	 	 	 	 	 	

	 	 		

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

in Fig. 1. Although the bumps in the track occur at the same location in space, due to 

the difference in	the speed profiles,	the oscillator is excited in	the two passes at

different points in time,	as shown by the arrow	in Fig. 4e.	This posed a	challenge 

when comparing multiple passes in the time domain, so we interpolated the signal 

into the spatial domain as	seen in Fig. 4f.	The bumps experienced by the oscillator 

line up more closely in the spatial domain, but	the effects of varying	speed	are still 

visible.	The wavelengths of the oscillators (the distance over which they occur) 

varies considerably	in Fig. 4f	due	to	the	speed (as	highlighted	in the	box),	even

though the periods of	the	oscillations	(their duration in time)	are invariant,	as can

be seen in	Fig. 4e. 

Fig. 4. Two passes over the toy-roughness shown for	illustration: (a) the	speed profiles in the time 

domain; (b)	speed profiles in the spatial domain; (c)	the roughness interpolated in time; (d)	the 

roughness in space; (e)	the acceleration of the oscillator in time,	the arrow shows the period of 

misalignment;	and (f)	the acceleration of the oscillator in space,	the square highlights a location where 

the wavelengths of the oscillations differ.	The oscillator in both passes has a	frequency of 1.5Hz and a	



	 	 		

	

	 	 	

	 	

	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	

			

	

damping ratio	of 0.2. 

The variation	in Fig. 4 highlights	one of	the	challenges	in dealing	with	

variable	speed; a	second challenge lies in	not	knowing	the exact	position	of the 

oscillator, a phenomenon that	occurs in practice	due to	GPS error. In order to plot

the signal in the spatial domain (Fig. 4f),	we used the position of the oscillator, �(�). 

In	practice, we only know some approximation of the position, �!(�) = �(�) + �(t),	

where � is the error. Let us assume that this error is normally	distributed	with	zero-

mean and standard deviation �. We show	the effect	of this error with different	

standard	deviations	in Fig. 5.	While in Fig. 4f	we showed the vibration	signal	for two 

passes in the spatial domain, in Fig. 5a	we show	200 passes,	where each horizontal 

line is a	vibration	signal from	a single pass,	and the color is indicative of the

vibration size.	Note that	we show	100 passes before the track	change,	and 100 

passes after the track	change from	Fig. 3a.	In Fig. 5b	and Fig. 5c	we	show higher

levels of position	uncertainty by varying	the standard deviation	of the error,	�. As 

the position	uncertainty grows,	detecting	changes	in the	tracks	becomes harder,	

although detection is	still possible	(even visually) for	this	type	of a	trivial	track	

change. 



	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 		 	

	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

		 	

	  	

	     	

	  	

	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	

Fig. 5. Effect of position	uncertainty. Each	row of the above plots shows one pass of the oscillator over the 

toy-model roughness shown in Fig. 3.	Passes 1-100 correspond to the “before” roughness, while passes	

101-200	correspond	to	the “after” roughness. The color along each line represents the acceleration of 

the oscillator in m/s2 but has been truncated	at current bounds to	show greater clarity. Note that	each	

pass has a unique speed	profile. (a) Shows the response of the oscillator in space with no	position 

uncertainty, (b) shows the response	with added Gaussian uncertainty,	with zero mean and standard 

deviation of � = 10m (c) shows the oscillator with	� = 25m. 

In Fig. 5 we show	the vibration signal plotted	spatially as a more intuitive 

signal representation	given our	interest in	particular	locations	of track.	To quantify	

how well this	representation	portrays track	condition,	we consider it	as a feature,	

and compare it with three other features, time-frequency,	spatial-frequency	and	

signal-energy,	to	see which	provides the greatest discrimination of track condition. 

Each is described in the equations below	where �[∙] denotes the Fourier Transform, 

�! is the vector of collected data from	nth pass,	�! is the	feature	vector,	and	�! is the	

position	vector with added noise	�. 

Time-frequency �! = �[�!] 

Spatial-frequency �! = �[�!|!! 
] 

Spatial-amplitude �! = �!| !! 

Signal-energy �! = �!!|!! 

where �! = � + � ; � = � 0,� 

The motivation for	having two	types	of frequency-based features is	the	prevalence	

of frequency-based features in	the literature [21–24] or	features	related to 

frequency,	such	as	wavelets	[25].	 “Time” here means the raw signal, whereas 

“spatial”	denotes the signal	has been	linearly interpolated	spatially given its speed



	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	

	 	 		

	

	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	

	

profile.	The signal-energy	feature is similar to the spatial-amplitude,	but it is

squared	prior	to	interpolation.	This squaring makes a difference because it makes 

the feature have	a non-zero mean. Prior	to	classification,	the	spatial-amplitude and 

signal-energy	features were averaged over a 25m	section of	track.	This step 

increased robustness	to	position uncertainty	for both	features,	but can filter	out 

some zero-mean oscillations.	

To evaluate	the	features,	we	used supervised	classification;	the goal	was	to	

see which	features	allow for	the	clearest indication	of track change.	Here we	used a	

support vector machine classifier with a linear kernel (we choose a simple model to 

avoid overfitting given the relatively few passes we use in our experiments with 

operational data).	We	selected 150	passes	out of the original	200 for training	(the	

remaining 50 are for testing), and we repeated for	50 fold-cross	validation. High	

classification accuracy means that the data is more easily separable, i.e. the feature 

is useful.	The features	were long (even in this simulation, 104 samples), so we select 

only the 50 most discriminative indices	of the	feature.	 To accomplish this, we use 

the technique described in	[23],	where	we find the mean signal for both classes from	

the training data, then define the most discriminative indices as those with the 

greatest difference between the two mean signals. In	total, to explore	feature	

selection, we simulate 180,000 passes of the oscillator over 1km	of simulated track 

(3 types	of track	changes × 6 damping ratios × 5	natural frequencies	× 10	levels	of

position	uncertainty	× 200	passes	each). 



	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	

	 	 	

	 	 	

	

	

		

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

2.2	Feature Selection	Simulation	Results 

The classification	results	from	the simulation are shown	in Fig. 6 and Fig. 7.	This

was	a binary	classification, so 50% accuracy would mean the labels are random, 

while higher accuracy means more consistency	in determining the state of the track	

given the selected features.	We report accuracy	while	varying the level	of position	

uncertainty	(Fig. 6a), the oscillator’s damping ratio (Fig. 6b) and the oscillator’s 

natural	frequency	(Fig. 6c).	 In Fig. 6a,	we kept the damping and frequency ratio 

constant at values we observe in	the light-rail system	(� = 0.2; �! = 3�/2) [26].	We 

found that	time-frequency	features	provide	low accuracy	at all levels	of position	

uncertainty,	spatial-amplitude	and spatial-frequency	fall	in	accuracy as the position	

uncertainty	increases,	and signal-energy	offer relatively	high accuracy	at all levels	of

position	uncertainty.	It is not surprising	that time-frequency performed badly 

because it is sensitive	to	speed changes,	which	we	varied between	each run.	Spatial-

amplitude and spatial-frequency	require	interpolation	by	�! , so they are sensitive	to	

increases	in the	uncertainty	�. Signal-energy	also relies on	interpolation	by �! , but is 

less sensitive to position	error as it	represents	the	level of roughness or excitation	

caused by	the	track,	rather	than	the	specific state	of the	oscillator (it is always	

positive	independent	of the oscillator). 

We also investigated the effect of varying the damping ratio (Fig. 6b) and the 

natural	frequency	(Fig. 6c)	if the location	uncertainty is	kept constant at	� = 7m. For	

this level	of position	uncertainty,	signal-energy	is the	only	feature with strong	

discriminative power. When the damping ratio was zero, the oscillations kept 

growing over	the	course of a pass,	so the localized track	change are undetectable 



	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	

	

	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 		

	

even from	the signal-energy feature. As the damping ratio is increased, signal-

energy peaks	at � = 0.2 then decreases as the damping ratio grows because the 

changes are too	localized	and difficult to	detect given the	position uncertainty.	For

variation	of the	natural frequency	(Fig. 7c),	the	stiffer the oscillator, the more it 

transmits large track	changes to the sprung mass,	leading	to	easier	detection with 

the signal-energy	feature	for high values	of the	natural frequency.	In the case of

tamping in Fig. 7c,	the	reverse trend occurs.	Here, a stiffer oscillator leads to more 

localized changes and because tamping is effectively many small smoothing changes 

over a section	of track,	these	localized	changes	are	more	difficult to	detect.	

Overall,	the signal-energy feature outperforms the other features as it is robust 

to position	uncertainty for both types of track	changes.	This is particularly 

convenient as the	signal-energy	feature	could	potentially	be	universally applied in 

this type of monitoring system. In industry, the most common parameter for 

measuring track geometry is the standard deviation of	the	track profile,	and	signal-

energy is related to this parameter, as both	involve	squaring	their	respective	data 

points. The vibration signal is effectively a measure of the track profile, albeit 

filtered	by	the	train’s	suspension,	so the	strong performance of signal-energy	shows	

that	the traditional	parameters for track monitoring can inspire new features that 

are useful for our statistical track monitoring system. 



	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	

	 	 	 	 	 	 	  	

	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		 	

	 	 	 	 	 	 	  	

	

	 		

	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

Fig. 6. Classification	accuracy for spike change. (a)	Effect of position uncertainty for oscillator with 

� = 0.2 and �! = 1.5� (b) Effect of varying damping ratio while uncertainty � = 7� and �! = 1.5�. (c)

Effect of varying	natural frequency while � = 0.2 and uncertainty � = 7�. 

Fig. 7. Classification	accuracy for tamping change. (a)	Effect of position uncertainty for oscillator with	

� = 0.2 and �! = 1.5� (b) Effect of varying damping ratio while uncertainty � = 7� and �! = 1.5�. (c)

Effect of varying	natural frequency while � = 0.2 and uncertainty � = 7�. 

2.3	Change	Detection Simulation 

Having established that among the different criteria examined, signal-energy	

represents the most robust feature, in	this section w explore	how we	can	achieve	

our second goal: to determine when a change occurs in the tracks.	



	

	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

		

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Fig. 8.	Flow chat of change detection simulation.	Note that we repeat this for different track	changes and	

different levels of	position uncertainty. 

We conducted a simulation to study change	detection	approaches	by following the 

flow chart shown	in Fig. 8.	First	we generated many passes of	the	train	before	and	

after a track change (varying the speed profile as in the previous simulation study). 

We computed the signal-energy feature from	the vibration signal, then extracted the 

data at a particular	track location	across	all passes.	Although a number of change-

detection approaches exist, many of them	are designed for finding statistical change 

in a scalar quantity. In this application, we compared data from	different	passes of a

moving vehicle, so each pass was a vector. To format the data in a way that we could 

use	these	general	change detection	approaches,	we considered the value of the

signal-energy	feature	at a specific	location	on the	track,	i, over all passes, n, by

building a matrix, � �, � . 

⋯ �! ⋯ 
⋯ �! ⋯�(�, �) = ⋮ 
⋯ �! ⋯ 

Using this formulation, we experimented with three different change detection 

filters: cumulative summation control chart (CUSUM), generalized likelihood ratio 

(GLR) and	a Haar	filter. 

All three change-detection	methods	effectively	detect when	there	is a change	in

the mean-value of the feature at a particular location of track compared to that value 



	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	

 	

	 	 	 	 	 	 	 	 	 	 	 		

	

	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

 	

 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

for a window (set number) of previous passes. Details of each will be presented 

briefly to explain	how	they are applied within the two dimensional feature matrix. 

1. Cumulative summation control chart (CUSUM) estimates the mean value 

over a window of	 previous passes	 (known	 as	 a sliding	 window),	 then	

compares the current (or most recent value) to the historic mean [15].	 If

there is a succession of passes all deviating from	the mean in one direction,	it 

will trigger a detection event because it is likely that the mean has changed. 

Mathematically, the mean, Θ, is estimated from	historical data over a window 

of� + 1 previous points.	

!
1

Θ(�, �) = �(�, �)� + 1 
!!!!! 

We then find how the data from	the current pass differs from	this mean. 

δ(�, �) = �(�, �) − Θ(�, �) 

Finally	we	add	this	difference,	�, to a running sum	of the	differences. 

�(�, �) = � � − 1, � + �(�, �) 

If the data varies from	the mean consistently in one direction (positive or 

negative) intuitively the data has changed because the mean no	longer 

represents the data. We say a change has occurred when the magnitude of 

� exceeds	a threshold,	h, |� �, � | > ℎ. 

2. The generalized	 likelihood	ratio (GLR) looks for a	change in	 the underlying	

distribution,	and	quantifies	the	log-likelihood	that the	recent data is	derived

from	 the historical distribution [15].	 If the recent data appears dissimilar 

from	 the historical data, then the approach will trigger a detection event. 



	 	 	 	 	 	

	

	

	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

 	

	 	

	

	

Mathematically, let us call the	 first window of	 data	�! , and the second

window	of data	�!. 

�!(�, �) = �(� − � − 1: � − 1, �) 

�!(�, �) = �(�: � + �, �) 

The	distribution	of �! is defined by	�! and the distribution	of �! by �!. We

want to see the likelihood (�[∙]) that �! comes from	the same distribution as 

�!, �!, versus the likelihood it comes from	 �!. 

� �, � = 2 log 
�[�!(�, �)|�! �, � ] 
�[�!(�, �)|�! �, � ] 

We say a change has occurred when	� exceeds	a threshold,	ℎ, i.e �(�, �) > ℎ.

In other words, beyond some threshold, the data is so much more likely to 

have come from	a new distribution than from	the historical distribution	that 

we say a change in	the data	has occurred. 

3. The Haar filter	 finds the difference between the sum	of recent data and the 

sum	 of historical data, triggering a detection event if the difference is	 too	

large. Mathematically, the difference between	 the two windows of data	 of 

width � + 1 can be	written	as

!!! !!! 

� �, � = �(�, �) − �(�, �) 
!!! !!!!!!! 

As in previous approaches,	we say	a change has occurred whe �(�, �) > ℎ.

This approach	tends	to	find locations	where	a step	change	has	occurred

between	the two windows of data. 



	 	

	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	

	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	

	 		 	 	 	

	 	 	 	

Each of the approaches relies on	a sliding	window	of data: shorter-sized	

windows have the potential for detecting changes more rapidly after they occur, 

while longer windows allow	for greater statistical	significance; here we chose	a 

window	size of 20 passes, which would allow our system	to detect a change within a 

week (assuming a few passes over the track per day). The	results	of applying	each	of

these filters to the simulated changes can be seen in Fig. 9 as will be discussed in	

more detail in the next section. 

2.4	Change	Detection Simulation Results 

In this section, we discuss the performance of the three change-detection	

approaches described previously.	Results of each approach	applied to one example 

of each	type	of simulated track	change are shown in	Fig. 9. Successful	change-

detection filters should produce a high value after the change occurs at the same 

location	in	the track,	and successful detection has been indicated	with	a red-box.	

Note that the change is not necessarily detected immediately, as it takes several	

passes after the change to build up statistical	significance that	a change has indeed 

occurred. All three	approaches	detected	the	track	change on	the left	in Fig. 9b-d 

(with	an	ideal threshold),	while only the Haar filter	was able to detect the tamping 

change in Fig. 9h.	



	 			 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		 	 	 	

	 		

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

Fig. 9. The change detection filters applied to the	data. (a-d) show one example	of a track replacement	

change, where the spike (due to	a broken track) is removed at 150m, while (e-h) show a	tamping change 

between 150	and	250m. Values in each figure (shown in color) have been normalized on	[0,1]. The red-

boxes indicate the true-positive events that could	be detected	with an ideal threshold. There are no 

boxes in (f) and	(g) as the methods failed	to	detect the change. The	data	shown	in	this figure has no	

position uncertainty. 

CUSUM is perhaps the most versatile of the methods, as it could detect a gradual 

change in the mean over time, while GLR and Haar work best for abrupt changes in 

the data. In our case, we assume the track change occurs over a short period of time, 

so the change	is complete before the train passes over that section of track again. 

Given this assumption, GLR and Haar might be expected to perform	better than	

CUSUM. GLR is more complex than	the Haar	filter	as	it involves not only the mean, 

but also the standard	deviation in calculating the	distribution of	the	data before	and	

after the change.	A change in variance could trigger a detection event, but it is 



	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	

	

	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 		 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	

	

	 	 	

	

unlikely in our application that high variance	would be due	to an infrastructure	

change, so GLR is less	robust for	this	application.	It is the simplicity of the Haar filter 

that enables it to consistently detect tamping along the section of track where it was 

simulated in Fig. 9h.	

Fig. 9 shows just one example of each type of change,	but we quantified the 

success of each approach over the 100 changes we simulated.	We defined a true 

positive	as	a change	detected	within	20 passes	and	within 25m	of a true change. A	

false	positive	was	a change	detected	outside	of this	window.	We	report false	

positives and false	negatives (true	positives that were	not detected)	for a range	of 

thresholds in	Fig. 10a,	because selecting	the appropriate threshold itself can be 

difficult.	Methods	for selecting	the	best threshold	are beyond	the	scope o this	

project,	so we report	the error level assuming	the ideal threshold was selected in	

order to see which change detection technique has the most potential. Assuming 

false	positives,	FP, and false negatives,	FN, are equally	bad, we select	the threshold 

level that will minimize the larger of the two errors, which occurs	where	the	false	

negative and false negative curves intersect as	show in	Fig. 10a. In	other words,	we 

want to select	a threshold,	ℎ, where 

ℎ = argmin max ��, �� . 
! 

In total, for understanding	the trade-off	in the	change	detection	approaches,	we	

simulated 200,000	passes	(2 types	of track changes	× 100 track changes	× 100

passes × 10 levels of uncertainty).	



	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

	 	

	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

Fig. 10.	Change detection results from the	simulation. (a) A typical plot of false	negatives (FN)	and false 

positives (FP)	as the threshold is varied, shown with data for the 100 examples of	this type. In this case, 

the plot	is shown for	CUSUM with no position uncertainty, and where	the	two lines cross, there	is 43% 

error	of both types. The data has been normalized on [0,1]	so the threshold spans the whole range. (b) 

Here we show this minimum error for all three approaches and all position uncertainty levels for the 

spike change. (c) The minimum error for the tamping change.	

In Fig. 10b	we report	the lowest	error (i.e.	ideal	threshold) for all change 

detection	approaches	on the	track change	simulation.	While the error increased for	

all methods as position uncertainty increases, the Haar filter consistently	performed 

the best.	Fig. 10c shows the same error	quantification	but for the tamping change 

simulation,	and again the Haar filters outperforms the other methods.	Because

tamping occurs over a larger section of track, position uncertainty matters less as 

we saw	in	the classification	results shown	in	Fig. 7a,	so it is consistent that the	Haar	

filter remains relatively unaffected by position uncertainty. It is interesting that 

even though all three methods are applied to signal-energy	data (which	itself	was	

robust to	position uncertainty when	classified)	the	GLR and	CUSUM	approaches	are	

sensitive to position uncertainty. One reason for this may be that the classifier used 



	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 		

 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	

	 	 		

	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

in generating Fig. 7a,	an SVM,	was more robust to position uncertainty than the 

CUSUM or GLR methods. 

3. Validation	on the Light-Rail Vehicle Dataset 

The previous sections provide	a general	understanding	of which features	and	

detection	filters	work well to detect changes in a rough track from	the dynamic 

response	of a travelling	oscillator.	In this	section,	we investigate whether the same 

findings hold	true	for our	test-system	deployed on a light-rail vehicle.	

3.1	The Light-Rail Vehicle	Dataset 

We have collected an extensive	dataset over	the	last two	years;	this	i the	first 

study to our knowledge on	vibration-based track monitoring in	which data was	

collected	over such	a long	period	while	the	trains	were	in operational service.	We	

provide details about our instrumentation, about two infrastructure changes of 

interest,	and, finally, we assess the validity	of the	approaches	on this	dataset.	

The sensors	on the	train were installed through our partnership	with the Port	

Authority of Allegheny County;	the	location	of the	sensors can	be	seen in Fig. 11. We 

placed two uni-axial	accelerometers inside the cabin of the train to measure vertical 

vibrations,	one tri-axial accelerometer on the central wheel truck, and a BU-353	GPS

antenna mounted just under the roof. In	this project, we only use data from	the 

accelerometer mounted inside the cabin	above	the	front wheel-truck,	a Vibra-



	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	

		

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		

	

Metrics model 5102 sensor.	The train car is a CAF light-rail vehicle	that has an	

empty mass of 40 metric tons,	and a length of 27m.	

We	have	collected	data from	hundreds of complete passes through the 30km	rail 

network, sampling continuously from	the GPS at 1Hz and from	the accelerometer	at 

1.6kHz.	Details of this deployment can also be found in a	previous conference 

proceeding [11]. One of the challenges in	analyzing	the data	has been	handling the 

varying speed	and	the	position	uncertainty,	issues	which	inspired	the	above	

simulations. 

Fig. 11. Instrumentation of	light rail	vehicle. We placed a GPS antenna just below the roof the train, the 

data acquisition system in a cabinet near in the conductor, accelerometers inside the main cabin and on	

the central wheel truck.	In this project we only used data from the accelerometer highlighted with the 

red box, which measures vertical vibrations inside the cabin of	the train. 



	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

4.1	Trac Change in	the Light-Rail Dataset 

In September 2014, the owner of the	light-rail system	replaced	the	track in 

an old	road-crossing.	We use this known maintenance	activity,	where	faulty	track 

was replaced with good track, to test	our signal analysis	pipeline. Fig. 12a and b 

show two characteristic	passes of the	train over	the 1km	section of track. In the 

second pass	the	train stops at	two stations,	the first	at 200m	and the second at

520m,	whereas	in the first	pass it only stops at on of the	stations	(at	200m).	The	

train stops	when	there	are	passengers	to	pick up or	let off, which poses a challenge 

when compared data between	passes.	One hundred passes over this section	of track	

are shown	in	Fig. 12c,	where	the	color	indicates	the	value	of accelerations	recorded. 

Although difficult to see in Fig. 12,	there	is a high	frequency	vibration event when	

crossing a road at 220m, an	event which no longer occurs after the 50th pass,	when

the repair is	done. It is much easier to see the change in Fig. 13 because signal-

energy is a better	indicator of track	state.	As the train crosses the road at 220m, high 

signal-energy can	be	seen in Fig. 13a. This	spike	is absent in	Fig. 13b	or after pass 

#50 in	Fig. 13c due	to	the	repair.	

Note	as	well that the	first station	stop in	Fig. 12(a)	and	Fig. 13(a)	occurs just 

after 200m, whereas in (b) it occurs just before 200m. This is likely due to the 

orientation	of the	train.	 The	GPS is at one end of	the	train,	and	the	train	always	

stops	at the	same location within the station. If	the	orientation	of the	car	changes,	

the position	can	differ by 27m,	the length	of the car.	Due	to	the	sensor’s location	on

the train, it will interrogate the tracks near the stations at different speeds. A	sensor 

at the front	of the train	will	travel	quickly over	tracks	at the	beginning	of the	station,	



	 	 	 	 	 	 	 	 	

	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 				

	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

and slowly	over tracks towards the end of the station,	and the reverse for a sensor at

the back	of the train, adding to the difficulty of comparing data directly between	

different runs.	
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Fig. 12. Spatial signal. (a) A	pass before repair showing both the train speed and vertical vibrations from 

sensor inside the train. (b) A	pass after	repair. (c) 50 passes before	and 50 passes after	the	repair, 

where each pass is a horizontal line and the color indicates the value of the vibrations. With the spatial-

amplitude feature, the track change is nearly impossible to see. 
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Fig. 13. Signal-energy. (a)	 pass before repair showing both the train speed	and	vertical vibrations from 

sensor inside the train. (b) A	pass after repair. (c) 50	passes before and	5 passes after the repair, 



	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		

	

	 	 	 		

where each pass is a horizontal line and the color indicates the magnitude of the signal-energy feature.	

With the signal-energy	feature, the	track change	is clearly	visible. 

As in the simulation, we extracted different features from	the data and used 

classification to determine which features allow the infrastructure change to be 

detected	most readily. In	a binary	classification	between the two states,	we achieve 

91%	accuracy	in Fig. 14a, drawing data from	a 500m	section of track shown in Fig. 

14c. The second best feature appears to be the time-frequency	feature.	However,	as	

we saw in the simulation, this feature would not	be expected to detect	track	changes 

given the train’s variable speed. It is far more likely that the feature is detecting 

temperature differences between the two classes as the data was collected over a 

year, and Pittsburgh is a temperate region with significant temperature	variability.	

This hypothesis is confirmed by Fig. 14b	where we show	the adjacent	500m	section	

of track where	no work was	done. Classification using the	frequency-feature	allows	

for 78%	accuracy	despite	the	fact that the infrastructure has not	changed,	whereas 

classification	using the	signal-energy	feature	allows	for 67% accuracy	(close	to	

random) meaning it is more robust to environmental conditions. Again we use 75% 

of the	data for training,	25% for testing	and	50-fold	cross validation	as	in the	

classification in the simulation study. 

(c)	Data used for classification 



	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 				

	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	
	

	
	

Tim
e-F

req
ue

nc
y

Tim
e-F

req
ue

nc
y

Spa
tia

l-F
req

ue
nc

y

Spa
tia

l-A
mplit

ud
e

Sign
al-

Ene
rgy

 

Spa
tia

l-F
req

ue
nc

y

Spa
tia

l-A
mplit

ud
e

Sign
al-

Ene
rgy

 

1 1
(a) Track section with change (b) Track section with no change 

0.8 0.8 
Section with change Section with no change 

Cl
as
s 2

 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

0.6 

0.4 

0.2 

0.6 

0.4 

0.2 

0 0 

Fig. 14. Classification	accuracy of a 500m section	(a)	of a track	where rails were replaced,	and (b)	of a	

track nearby where no work was done. (c)	Shows where the data for the classification was drawn from 

and the two classes used in	the binary classification. High	classification	accuracy means the classes are 

separable, and 50% accuracy means the classes are not separable leading to random	classification. 

Signal-energy	is sensitive	to track changes because it achieves 91% accuracy when there is a track 

change, and is	close to random when there are no track changes, meaning it is	not classifying based on 

environmental factors. 

4.2 Tamping	Change in the Light-Rail Dataset 

Tamping is an important maintenance procedure used to improve track 

geometry. The tamping machine (shown	in Fig. 15) measures the profile of the track, 

then	adjusts the ballast	below	the track to produce a smoother,	safer ride.	One
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future goal could be to use our data to optimize tamping schedules. At this early 

stage	though, we are most interested in identifying	which features are sensitive to 

tamping, and which detection	approach works best	for this feature.	In the summer 

of 2014, three 500m	sections of track were tamped as shown in Fig. 16,	starting	at

1500m, 2000m	and 2500m.	Unlike	the	track change in the	previous section,	the	

change due	to	tamping	is subtle, but occurs over a much larger section of track.	

Notice	how in	the	regions with no tamping, the signal is relatively consistent over all 

100 passes, while in the areas with tamping, there is more signal-energy (i.e. more 

bumpy ride) before tamping, and less signal-energy (i.e. smoother ride) after 

tamping. 

We	tested	all four features in a binary classification to discriminate between 

before and after a tamping event; we found that	the signal-energy	feature	is the	best 

for detecting	this	change.	The classes in the classification and the region from	which 

the data	was drawn	are shown	in	Fig. 17c.	Signal-energy	achieves 90% classification	

accuracy (shown	in Fig. 17a)	with	a change,	and <60% accuracy	(effectively

random) in	Fig. 17b	when there is no change. This means that the signal-energy	

feature	is classifying	due	to	the	change	in the track	and not an environmental 

variable.	Frequency	and	spatial-frequency features	on the	other	hand report 70%	

accuracy	if there is a change (as in	Fig. 17a), and 70%with no change (as	in Fig. 

17b). We can assume the discriminative power stems from	temperature changes 

and not from	infrastructure changes. Note that for	consistency,	we only classified 

data from	a 500m	section of track as in the previous section, but the tamping occurs 



	

	

	

	

	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

	

	
	

	
	

	 	 	 		

over a larger	region.	Classification accuracy	can be slightly increased by considering	

a larger section	of track.	

Fig. 15. The tamping machine used on the light-rail system. 
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Fig. 16. Region of track	where tamping occurs with (a)	showing the spatial-amplitude feature and (b) 

showing the signal-energy	feature. The tamping maintenance was done three times on three separate 

days due to	the limitations on how much work	the tamping	machine can	do per day. Note that the peaks 

between 2400	and	2500m (and	between 400	and	500m) are due to	switchgear	in the	tracks. 

(c)	Data used for classification 
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Fig. 17. Classification	accuracy of a 500m section	(a)	of a track where tamping work was done,	and (b)	of 

track nearby where no work was done. As in Fig. 14,	the high accuracy of the signal-energy	feature	

where there is track work shows it is sensitive to infrastructure changes, and the low accuracy (almost 

random) where	no work has been done	shows it is robust to environmental variables. (c)	We show the 

data used	for the classification in relation to	Fig. 16b, both in terms of which 500m sections of track were 

used, and	how the two	classes in the binary classification were defined. 

4.3	Detecting	Chang in	the	Light-Rail Dataset 

The ultimate goal of the project is to automatically detect changes in the 

infrastructure. As such, change detection is a vital step. Although we have collected 

hundreds of passes	through	the	rail-network,	we still have relatively	few known 

infrastructure	changes.	Thus, we do not	have sufficient data to	rigorously	test 
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different threshold	levels	as	we	did i the simulation. Instead, we applied the change 

detection methods on the operational data and present	the results	with a	basic 

threshold applied in	Fig. 18. This figure mirrors the results in Fig. 9,	where	the raw	

data and	all three	approaches	are	shown.	 Figure	19a shows	the	signal-energy	

feature	for the	track replacement change, and Figure 19b for the tamping changes. 

Fig. 18 c-h show the results of applying	the three change detection	approaches to 

each of	these	two	changes,	in which the red-boxes indicate the change-detection	

approach was successful.

For both types of track	changes on	the light-rail dataset, the Haar filter	

performed the best,	reliably detecting both track and tamping changes	(Fig. 18d	and	

h) as predicted by our simulation results.	For the	track-type change,	CUSUM and	

Haar filter (Fig. 18b	and Fig. 18d	respectively)	could	detect a	change with zero error 

given the correct	threshold.	 For the tamping change,	CUSUM	and GLR	fail	to detect	

the change at all.	CUSUM	fails because the variability	in the sections with high	

energy (like	the	switchgear	at 2500m) are larger than	the change from	tamping 

itself, which occurs on	low-energy	sections	of track.	It is unclear	why	the	GLR

method has false-positives,	although it could be due	to the GLR’s sensitivity	to

changes in variance as discussed earlier.	It is important to note that the Haar filter 

succeeds	in our	original goal:	detecting	changes	relative	to	historical	behavior,	

rather than simply detecting	areas of the track	that	produce	large	vibrations.	The

high values around 2500m	in Fig. 18a	due to switchgear do not	affect	the detection 

in Fig. 18h. 



	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	

 	 	 		

  

   

   

   

       

Fig. 18. Change detection	on the light-rail dataset for the track replacement change at Potomac	Crossing 

(a)-(d) and tamping	change (e)-(h). Panels (a) and (e) show the signal-energy	feature	while	(b)-(d)	and 

(f)-(h)	show the respective change detection	techniques. The red-boxes indicate true-positive changes 

that	could be detected with an appropriate threshold. 

4. Concluding Remarks and	Recommendations	

In this project, we have proposed a new way to monitor rail infrastructure by recording 

data from accelerometers in the cabin of a train while it operates in revenue service. To 

realize such a system, new features must be extracted from the vibration signal that are able 

to characterize the rails despite the filtering from the train’s suspension, the train’s changing 

speed, and the noise in the GPS location. We tested four features, time-frequency, spatial-

frequency, spatial-domain and signal-energy on simulated data and found signal-energy to 

be the best feature for detecting both track changes and tamping changes. We then tested the 



  

 

  

   

     

 

 

 

   

 

   

 

  

 

 

 

 

same features on the operational data from the light-rail system, and showed that signal-

energy was the most sensitive to infrastructure changes and the least sensitive to 

environmental variability. Both in our simulations and in the operational data, we found that 

frequency-based features do not work well, despite their widespread use in many structural 

health-monitoring studies. 

In addition to feature extraction, we studied a variety of unsupervised change detection 

approaches, including CUSUM, GLR, and the Haar filter. We found that the Haar filter 

outperformed the other approaches on both the simulated data and operational data, as it was 

particularly robust to position uncertainty. 

From the results of this project, it appears that vehicle-based monitoring could be a low-

cost approach to monitor our infrastructure; we were able to detect changes on an 

operational system using just a single sensor on a train in revenue service. 

Future work on train-based rail-infrastructure monitoring should look at additional types 

of changes in rail infrastructure, and more instances of each type. In this project, we 

considered statistical approaches that largely ignore the underlying physics of the problem; 

hybrid approaches, which combine statistics with a physics-based approach could provide 

additional insight. 

Because connected vehicles are becoming more and more prevalent, we believe that 

collecting the requisite data for the proposed type of monitoring will become easier. The 

more data available, the more accurate the monitoring could be. However approaches 

capable of fusing data from heterogeneous vehicles and sensors must be developed. 

This type of low-cost monitoring system could compliment traditional inspection 

techniques to provide continuous and objective information to infrastructure owners. This 



 

	

information would allow for more targeted maintenance interventions, improving the 

reliability, safety and efficiency of rail transit. 
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